Sequences affecting the V(D)J recombinational activity of the IgH intronic enhancer in a transgenic substrate.
نویسندگان
چکیده
The immunoglobulin heavy chain intronic transcriptional enhancer (E mu) is part of a complex cis-regulatory DNA region which has notably been shown to modulate V(D)J rearrangements of associated variable gene segments. We have used recombination substrates comprised of the E mu enhancer together with various lengths of additional downstream mu sequences to assess the individual contribution of those sequences to the V(D)J recombinational regulatory activity. Surprisingly, in the absence of large amounts of mu sequences, substrate rearrangements were not detected in Southern blot analyses of the lymphoid tissues from independent transgenic mice, but were readily detectable following transfection into cultured pre-B cells. A short mu segment which includes matrix association regions (MARs) was not sufficient to restore high levels of rearrangements within the reporter transgenes. However, additional experiments demonstrated that the mu sequences are dispensable for V(D)J recombination in transgenic thymuses, implying a suppressive effect exerted by the vector sequences left in the transgenic insert, when they are attached near the E mu regulatory region. This suppression of V(D)J recombination, which correlates with an hypermethylation of the transgenes, is discussed in view of previously reported transgenic and gene targeting experiments.
منابع مشابه
Hypermutation is observed only in antibody H chain V region transgenes that have recombined with endogenous immunoglobulin H DNA: implications for the location of cis-acting elements required for somatic mutation
Mice with transgenes containing an antibody H chain V region (VHDJH) gene were used in an analysis of the cis-acting elements required for hypermutation of immunoglobulin (Ig) V genes. These transgenes can somatically recombine with endogenous IgH DNA, leading to the formation of functional heavy (H) chains partially encoded by the transgenic VHDJH. The transgenomes in the five different lines ...
متن کاملElucidation of IgH intronic enhancer functions via germ-line deletion.
Studies of chimeric mice demonstrated that the core Ig heavy chain (IgH) intronic enhancer (iEmu) functions in V(D)J and class switch recombination at the IgH locus. To more fully evaluate the role of this element in these and other processes, we generated mice homozygous for germ-line mutations in which the core sequences of iEmu (cEmu) were either deleted (cEmu(Delta/Delta) mice) or replaced ...
متن کاملV(D)J recombination frequency is affected by the sequence interposed between a pair of recombination signals: sequence comparison reveals a putative recombinational enhancer element.
The immunoglobulin heavy chain intron enhancer (Emu) not only stimulates transcription but also V(D)J recombination of chromosomally integrated recombination substrates. We aimed at reproducing this effect in recombination competent cells by transient transfection of extrachromosomal substrates. These we prepared by interposing between the recombination signal sequences (RSS) of the plasmid pBl...
متن کاملFlanking nuclear matrix attachment regions synergize with the T cell receptor delta enhancer to promote V(D)J recombination.
Previous studies have identified nuclear matrix attachment regions (MARs) that are closely associated with transcriptional enhancers in the IgH, Igkappa, and T cell receptor (TCR) beta loci, but have yielded conflicting information regarding their functional significance. In this report, a combination of in vitro and in situ mapping approaches was used to localize three MARs associated with the...
متن کاملCritical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci
V(D)J recombination of immunoglobulin (Ig) heavy (IgH) and light chain genes occurs sequentially in the pro- and pre-B cells. To identify cis-elements that dictate this order of rearrangement, we replaced the endogenous matrix attachment region/Igk intronic enhancer (MiE(kappa)) with its heavy chain counterpart (Emu) in mice. This replacement, denoted EmuR, substantially increases the accessibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 22 5 شماره
صفحات -
تاریخ انتشار 1994